

4 Basics of object oriented programming and procedure oriented programming

4.1 Procedure-Oriented Programming

In the procedure oriented approach, the problem is viewed as the sequence of things to

be done such as reading, calculating and printing. The primary focus is on functions. A

typical structure for procedural programming is shown in figure below. The technique is

to divide a larger problem into smaller problems.

Procedure oriented programming basically consists of writing a list of instructions for the

computer to follow, and organizing these instructions into groups known as functions.

We normally use flowcharts to organize these actions and represent the flow of control

from one action to another.

In a multi-function program, many important data items are placed as global so that

they may be accessed by all the functions. Each function may have its own local data.

Global data are more vulnerable to an inadvertent change by a function. In a large

program it is very difficult to identify what data is used by which function. In case we need

to revise an external data structure, we also need to revise all functions that access the

data. This provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that we do not model real

world problems very well. This is because functions are action-oriented and do not really

corresponding to the element of the problem.

Some Characteristics exhibited by procedure-oriented programming are:

• Emphasis is on doing things (algorithms).

• Large programs are divided into smaller programs known as functions.

• Most of the functions share global data.

• Data move openly around the system from function to function.

• Functions transform data from one form to another.

• Employs top-down approach in program design.

4.2 Object Oriented Programming

The major motivating factor in the invention of object-oriented approach is to remove

some of the flaws encountered in the procedural approach. OOP treats data as a critical

element in the program development and does not allow it to flow freely around the

system. It ties data more closely to the function that operate on it, and protects it from

accidental modification from outside function. OOP allows decomposition of a problem

into a number of entities called objects and then builds data and function around these

objects.

The organization of data and function in object-oriented programs is shown in fig.1.3.

The data of an object can be accessed only by the function associated with that object.

However, function of one object can access the function of other objects.

Some of the features of object oriented programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are ties together in the data

structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

• New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

Object-oriented programming is the most recent concept among programming

paradigms and still means different things to different people.

4.2.1Basic Concepts of Object Oriented Programming

It is necessary to understand some of the concepts used extensively in object-

oriented programming. These include:

• Objects

• Classes

• Data abstraction and encapsulation

• Inheritance

• Polymorphism

• Dynamic binding

• Message passing

We shall discuss these concepts in some detail in this section.

Objects

Objects are the basic run time entities in an object-oriented system. They may represent

a person, a place, a bank account, a table of data or any item that the program has to

handle. Programming problem is analyzed in term of objects and the nature of

communication between them. Program objects should be chosen such that they match

closely with the real-world objects. Objects take up space in the memory.

When a program is executed, the objects interact by sending messages to one

another. Foe example, if “customer” and “account” are to object in a program, then the

customer object may send a message to the count object requesting for the bank

balance. Each object contain data, and code to manipulate data.

Fig. 1.5 representing an object

Classes

We just mentioned that objects contain data, and code to manipulate that data. The entire

set of data and code of an object is defined with with the help of class.. Once a class has

been defined, we can create any number of objects belonging to that class. Hence

objects are variables of the type class.

Each object is associated with the data of type class with which they are created. A

class is thus a collection of objects similar types. For examples, Mango, Apple and

orange members of class fruit.. The syntax used to create an object is not different then

the syntax used to create an integer object in C. If fruit has been defines as a class, then

the statement

Fruit Mango;

Will create an object mango belonging to the class fruit.

Data Abstraction and Encapsulation

The wrapping up of data and function into a single unit (called class) is known as

encapsulation. Data and encapsulation is the most striking feature of a class. The data

is not accessible to the outside world, and only those functions which are wrapped in the

class can access it.

Abstraction refers to the act of representing essential features without including the

background details or explanation. Classes use the concept of abstraction and are

defined as a list of abstract attributes such as size, wait, and cost, and function operate

on these attributes. They encapsulate all the essential properties of the object that are

to be created. Like you don’t need to understand working of a car to drive.

The attributes are some time called data members because they hold information. The

functions that operate on these data are sometimes called methods or member function.

OBJECTS: STUDENT

DATA

Name

Date-of-birth

Marks

FUNCTIONS

Total

Average

Display

………

Inheritance

Inheritance is the process by which objects of one class acquired the properties of

objects of another classes. For example, the bird, ‘robin’ is a part of class ‘flying bird’

which is again a part of the class ‘bird’. The principal behind this sort of division is that

each derived class shares common characteristics with the class from which it is derived

as illustrated in fig 1.6.

In OOP, the concept of inheritance provides the idea of reusability. This means that we can add additional

features to an existing class without modifying it. This is possible by deriving a new class from the existing

one. The new class will have the combined feature of both the classes. The real appeal and power of the

Allows the programmer to reuse a class i.e almost, but not exactly, what he wants, and to tailor the class

in such a way that it does not introduced any undesirable side-effects into the rest of classes.

Polymorphism

Polymorphism is another important OOP concept. Polymorphism, a Greek term, means

the ability to take more than on form. An example you will study is function overloading.

Fig. 1.7 illustrates that a single function name can be used to handle different number

and different types of argument. This is something similar to a particular word having

several different meanings depending upon the context. Using a single function name to

perform different type of task is known as function overloading.

Message Passing

An object-oriented program consists of a set of objects that communicate with each

other. The process of programming in an object-oriented language, involves the following

basic steps:

1. Creating classes that define object and their behavior,

2. Creating objects from class definitions, and

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information much the

same way as people pass messages to one another. The concept of message passing

makes it easier to talk about building systems that directly model or simulate their real-

world counterparts.

A Message for an object is a request for execution of a procedure, and therefore will

invoke a function (procedure) in the receiving object that generates the desired results.

Message passing involves specifying the name of object, the name of the function

(message) and the information to be sent. Example:

Object has a life cycle. They can be created and destroyed. Communication with an

object is feasible as long as it is alive.

4.3 Benefits of OOP

OOP offers several benefits to both the program designer and the user. Object-

Orientation contributes to the solution of many problems associated with the

development and quality of software products. The new technology promises greater

programmer productivity, better quality of software and lesser maintenance cost. The

principal advantages are:

• Through inheritance, we can eliminate redundant code extend the use of existing

• Classes.

• We can build programs from the standard working modules that communicate

with one another, rather than having to start writing the code from scratch. This

leads to saving of development time and higher productivity.

• The principle of data hiding helps the programmer to build secure program that

can not be invaded by code in other parts of a programs.

• It is possible to have multiple instances of an object to co-exist without any

interference.

• It is possible to map object in the problem domain to those in the program.

• It is easy to partition the work in a project based on objects.

• The data-centered design approach enables us to capture more detail of a

model can implemental form.

• Object-oriented system can be easily upgraded from small to large system.

• Message passing techniques for communication between objects makes to

interface descriptions with external systems much simpler.

• Software complexity can be easily managed.

While it is possible to incorporate all these features in an object-

oriented system, their importance depends on the type of the project

and the preference of the programmer. There are a number of issues

that need to be tackled to reap some of the benefits stated above. For

instance, object libraries must be available for reuse. The technology

is still developing and current product may be superseded quickly. Strict

controls and protocols need to be developed if reuse is not to be

compromised.

Applications of OOP

5 Introduction to C++

C++ is an object-oriented programming language. It was developed by

Bjarne Stroustrup at AT&T Bell Laboratories 1980’s.

The most important facilities that C++ adds compared to other

programming languages are classes, inheritance, function overloading.

5.1 Structure of C++ Program

A typical C++ program would contain four sections as shown in figure

below. The first section is include section where header files needed

for the program is placed. Next section classes are declared if object

are needed in the program and function prototypes or declarations.

Next section will have definitions of member functions of classes. Next

section will have main function which joins together all these sections.

Last section will have function definitions.

These sections can be placed in different files or in the same file.

Include Files

Class declaration &Function

prototypes

Member functions definitions

Main function program

Other function definitions

Fig 1.9 Structure of a C++ program

This approach is based on the concept of client-server model, where

client asks for the service of the server like your browser and a website,

as shown in figure below. The class definition including the member

functions constitute the server that provides services to the main

program known as client. The client uses the server through the public

interface of the class.

Fig. 1.10 The
client-server

model

Server

5.2 Simple C++ Program

Let us begin with a simple example of a C++ program that prints a

string on the screen.

Client

Main function Program

Member Function

Class Definition

Printing A String

#incl

ude<i

ostre

am>

Usin

g

name

space

std;

int

main(

)

{

cout<<”C

++ is the

best ”;

return 0;

}

Pro

gra

m

1.10

.1

Out

put

C++ is the best

This simple program demonstrates several C++ features.

Program feature

Every C++ program must a main() function. Also the execution of every

C++ program begins at main()(even if we have other functions above

it). C++ statements(simply lines) terminate with semicolons ‘;’.

Comments

Comments are special lines which will not be executed. They are used to help the reader of a program

understand it better.

The double slash comment is basically a single line

comment, you can write comment that is one line long.

// This is an example of

// C++ program to illustrate

// some of its features

If you want to write comments that have more than one line use /*,*/:

/*

T

h

i

s

i

s

a

n

e

x

a

m

p

l

e

o

f

C

+

+

p

r

o

g

r

a

m

t

o

i

l

l

u

s

t

r

a

t

e

s

o

m

e

o

f

i

t

s

f

e

a

t

u

r

e

s

*

/

O

u

t

p

u

t

o

p

e

r

a

t

o

r

The only statement in program 1.10.1 is an output statement. The

statement Cout<<”C++ is better than C.”;

Causes the string in quotation marks to be displayed on the screen.

This statement introduces two new C++ features, cout and <<. The

identifier cout(pronounced as C out) is a predefined object that

represents the standard output stream(monitor) in C++. Here, the

standard output stream represents the screen. It is also possible to

redirect the output to other output devices. The operator << is called

the insertion or put to operator.

The iostream File

We have used the following #include

directive in the program: #include

<iostream>

The #include directive instructs the compiler(the software which

converts your program into an exe and also checks for any mistakes

or errors in your code) to include the contents of the file enclosed within

angular brackets into the source file. The header file iostream should

be included at the beginning of all programs that use input/output

statements that is to print or read from keyboard.

Namespace

Namespace is a new concept introduced by the ANSI C++ standards

committee. This defines a scope for the identifiers that are used in a

program. For using the identifier defined in the namespace scope we

must include the using directive, like

Using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries

are defined. All ANSI C++ programs must include this directive. This

will bring all the identifiers defined in std to the current global scope.

Using and namespace are the new keyword of C++.

Return Type of main()

In C++, main () returns an integer value to the operating system.

Therefore, every main () in C++ should end with a return (0) statement;

otherwise a warning an error might occur. Since main () returns an

integer type for main () is explicitly specified as int.

Introduction to class and Object

4.1.1 DEFINITION AND DECLARATION OF A CLASS

A class in C++ combines related data and functions together. It

makes a data type which is used for creating objects of this type.

Classes represent real world entities that have both

data type properties (characteristics) and associated operations

Class

Private

Can only be accessed from

within the class

(behaviour) like a bank account which has properties like account

number, balanace and functions like withdraw amount or deposit

amount.

The syntax of a class definition is shown below :

Class name_of _class

{

private : variable declaration; // data member

Function declaration; // Member

Function (Method) protected: Variable

declaration;

Function

declaration; public

 : variable

declaration;

Function declaration;

};

Here, the keyword class specifies that we are using a new data type and is

followed by the class name.

The body of the class has two keywords namely :

(i) private (ii) public

In C++, the keywords private and public are called access

specifiers. The data hiding concept in C++ is achieved by using the keyword

private. Private data and functions can only be accessed from within the class

itself. Public data and functions are accessible outside the class also. This is

shown below :

data members

and

member functions

Data hiding not mean the security technique used for protecting computer
databases.

The security measure is used to protect unauthorized users from

performing any operation (read/write or modify) on the data.

The data declared under Private section are hidden and

safe from accidental manipulation. Though the user can use the private

data but not by accident.

data members

and

member functions

The functions that operate on the data are generally public so

that they can be accessed from outside the class but this is not a rule

that we must follow.

4.1.2 Data Members

Data members are variables that you create in a normal

program. Here while we define members we also specify its protection

level(public, private). Unlike a normal variable data members are usually

accessed within a class.

4.1.3 MEMBER FUNCTION DEFINITION

The class specification can be done in two part :

(i) Class definition. It describes both data members and member

functions.

(ii) Class method definitions. It describes how certain class

member functions are coded.

We have already seen the class definition syntax as

well as an example. In C++, the member functions can

be coded in two ways :

(a) Inside class definition

(b) Outside class definition using scope resolution operator (::)

The code of the function is same in both the cases, but the

function header is different as explained below :

4.1.3.1 Inside Class Definition:

When a member function is defined inside a class, we do not

require to place a membership label along with the function name. We use

only small functions inside the class definition and such functions are

known as inline functions.

In case of inline function the compiler inserts the code of the body

of the function at the place where it is invoked (called) and in doing so the

program execution is faster but memory penalty is there.

4.1.3.2 Outside Class Definition Using Scope Resolution Operator (::) :

In this case the function’s full name (qualified_name) is written as shown:

Name_of_the_class :: function_name

The syntax for a member function definition outside the class definition

is :

return_type name_of_the_class::function_name(argument list)

{

body of function

}

Here the operator::known as scope resolution operator helps in

defining the member function outside the class.

4.1.4 DECLARATION OF OBJECTS AS INSTANCES OF A

CLASS

The objects of a class are declared after the class definition. One

must remember that a class definition does not define any objects of its type,

but it defines the properties of a class. For utilizing the defined class, we need

variables of the class type. For example,

Complex comnum; //object declaration

will create two objects ob1 complex class type. As mentioned

earlier, in C++ the variables of a class are known as objects. These are

declared like a simple variable i.e., like fundamental data types.

4.1.5 Accessing Class Members

The private data of a class can be accessed only through the member functions of that class.
The main() cannot contain statements that access private directly. The public members of a
class can be accessed in the following syntax(for a function),

Object_name.function_name (arguments);

For example, the function call statement

complexnum. display();

Example program #include<iostream>

using namespace std;

class complex

{

 int real;

 int imag;

 public:

 complex()

 {

 real=0;

 imag=0;

 }

 void display()

 {

 cout<<real<<"+"<<imag<<"i"<<endl;

 }

};

int main()

{

 complex cnum;

 cnum.display();

 return 0;

}

4.2 Constructor

▪ A constructor is a special member function whose task is to initialize the object of a

class.

▪ Its name is same as the class name.

▪ A constructor does not have a return type.

▪ A constructor is called or invoked when the object of its associated class is created.

▪ It is called constructor because it constructs the values of data members of the class.

▪ There three types of constructor:

(i) Default Constructor

(ii) Parameterized Constructor

4.2.1 Default Constructor

The constructor which has no arguments is known as default constructor.

Demonstration of default Constructor.
Use the same program as above

4.2.2 Parameterized constructor

The constructor which takes some argument is known as parameterized constructor.
#include<iostream>
using namespace std;
class complex
{

 int real;
 int imag;
 public:
 complex(int r, int i)
 {
 real=r;
 imag=i;
 }
 void display()
 {
 cout<<real<<"+"<<imag<<"i"<<endl;
 }

};
int main()
{
 complex cnum(10,5);
 cnum.display();
 return 0;
}

A parameterized constructor can be called:

(i) Implicitly: account jimsaccount(1000);

(ii) Explicitly : account samsaccount=account(5000);

Destructor

• A destructor is used to destroy the objects that have been created by a constructor.

• Like constructor, the destructor is a member function whose name is the same as the class name but is

preceded by a tilde.

eg: ~ integer () { }

• A destructor never takes any argument nor does it return any value.

• It will be invoked automaticlly upon exit from the program – or block or function as the case may be – to clean

up storage that is no longer accessible.

• It is a good practice to declare destructors in a program since it releases memory space for further use.

• Whenever new is used to allocate memory in the constructor, we should use delete to free that memory.

•

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

